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1 Introduction 

Problem recognition and study objectives 

Japan has declared its commitment to carbon neutrality by 2050 and positioned renewable energy as “decarbonized 

power sources under practical use” in its 6th Strategic Energy Plan (2021), stating that it will “address maximum 

introduction of renewable energy as major power sources on the top priority” in 2050. In addition, in the government’s 

2030 energy supply-and-demand forecasts that were released at the same time, renewable energy is projected to 

account for approximately 20% of primary energy supply and 36-38% of total electricity generated. 

Onshore wind power is a promising energy source that will be indispensable to the firm achievement of carbon 

neutrality in Japan, and promoting its spread and improving its economy are key challenges. Installed onshore wind 

capacity in Japan is approximately 5 GW at the end of 20211 , and in the long-term energy supply-and-demand 

forecasts, it is projected to increase to around 16 GW by 2030 (in the “enhanced policy responses” scenario). Even 

so, onshore wind power would still only account for 3% of electricity generation as forecast for 2030. Further 

promotion and expansion are needed. 

At the same time, according to the government’s Power Generation Cost Verification Working Group, onshore 

wind power costs are calculated at 21.6 yen/kWh in 2014 and 19.8 yen/kWh in 2020, so cost reductions have made 

almost no progress (Power Generation Cost Verification Working Group, 2015; 2021). 2030 generation costs are 

estimated at 9.9-17.2 yen/kWh, which is a wide range, and this suggests a high degree of uncertainty. 

Generating costs for 2030 were estimated by applying reduction rates for construction costs used by international 

institutions in their declining cost scenarios (Figure 1) to Japan. The international price convergence case was also 

taken up to consider the possibility of even lower costs. Cost factors other than construction costs were left unchanged 

from 2020. 

Figure 1 Approach to 2030 Onshore Wind Power Cost Reduction Forecasts 

Source Item Recent costs 
2030 costs 

(reduction rate 10-47%) 

IRENA 
‘Future of wind’, 2019 13P 

Total installation costs 
*Average or average range 

1,497 USD/kW 
(2018) 

800-1,350 USD/kW 
(REmap Case 2030 costs ) 

Regular report 
Connection costs excluded from 

investment costs 
347,000 yen/kW 

(2018-2020) 
184,000-312,000 yen/kW 

(Construction cost estimate) 

Source: Power Generation Cost Verification Working Group (2021) 
Note: “Regular report” means actual domestic cost data of onshore wind power plants reported by wind power generators under the 
obligation required by Act on Special Measures Concerning Procurement of Electricity from Renewable Energy Sources by Electricity 
Utilities (Renewable Energy Special Measures Act). 

  

 
1 According to Japan Wind Power Association (JWPA), accumulated installed capacity of wind power in Japan was 4.58GW at the 
end of 2021. （https://jwpa.jp/information/6225/） 



5 

The method used by the working group to consider costs is one possible approach, but given the gap between costs 

internationally and costs in Japan, taking only the rate of reduction as proportional is an approach that requires further 

verification. The assumptions, too, for capacity factor are “limited suitable sites” and “unchanged from 2020 in light 

of recent years’ trends,” but in terms of a method for 2030 capacity factor assumptions, this methodology seems to 

lack technical basis. 

Given this background, it is important that we appropriately assess technical trends from recent years and evaluate 

future cost forecasts while better grounding them technologically and economically. By assessing costs based on 

technological and economic evidence, it becomes possible to gain insights for reducing onshore wind power costs in 

Japan. 

Based on this recognition of the problem, this study considers possibilities for reducing onshore wind power costs 

in Japan by accurately grasping the technologies and economy of onshore wind power plants which have started 

operation since 2016. The first chapter summarizes the results of a survey of technologies. The second chapter 

summaries the results of an investigation and analysis of costs. The study concludes with a summary of analysis 

results and discusses the potential for cost reductions. 

Scope and methodology of technology and cost considerations 

The scope of cost considerations focuses on investment costs and capacity factors. Investment costs are divided 

broadly into turbine costs (e.g., nacelle, tower, blades)2, construction costs, electric work costs, grid connection costs, 

and development costs. This study excludes development costs like wind condition surveys and environmental 

assessments, and focuses specifically on installation costs, performing detailed analysis of turbine costs, construction 

costs, electrical work costs, and grid connection costs. In addition, while it is important to consider operation and 

maintenance costs, many of the wind power plants installed after the introduction of the feed-in tariff (FiT) scheme 

have not been operating long, so it is difficult to acquire adequate data. As a consequence, these costs were excluded 

from the scope of the survey. 

In terms of the methodology used for technology and cost considerations, a questionnaire was administered to 

wind power operators, information collected on onshore wind turbine technologies and costs, and statistical analysis 

performed based on the data. The scope of wind power plants was commercial plants of 1.5 MW or higher launched 

in 2016-2021. 

The collected data is broadly divided into five categories: 1) information on the time from the plant’s FiT 

certification to the start of construction and the start of operations, 2) basic plant information (installed capacity, 

turbine capacity, number of turbines, turbine technical data), 3) information on direct construction costs, 4) 

information on construction (foundation, site preparations, facility installation, electrical work, transmission lines), 

and 5) capacity factors.  

 
2 When referring to power sources in general, the term "wind power" is used. When referring to wind turbines (including nacelles, 
towers, etc.) and the cost, "wind turbine" and "wind turbine cost" are used. And when referring to the entire facility including electrical 
equipment, etc. in addition to wind turbines, "wind power plant" is used. When indicating that the facility is limited to onshore use, 
"onshore" shall be appended. 
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2 Onshore wind power technology trends in Japan 

2.1 Summary of data 

The data sample covers 32 power plants with total installed capacity of 646 MW and 266 turbines (Figure 2). This 

represents around 40% of the installed capacity of power plants built in Japan between 2016 and 2021. The average 

plant size is 20 MW. The average plant size around the world differs with the region, but according to Wang (2021), 

it is 268 MW in Central and South America, 218 MW in North America, and 24 MW in Western Europe (2019-21). 

The average plant size in Japan is at the same level as Western Europe. 

Figure 2 Summary of Power Plant Data 

Launch year 2016-17 2018-19 2020-21 Total 

Number of plants 7 16 9 32 
Installed capacity (MW) 155 243 249 646 

 (Ref: Newly installed capacity in 
Japan MW)* 

412 523 727* 1,662 

Number of turbines 77 101 88 266 
Avg. turbine capacity** 

(MW/turbine) 
2.0 2.4 2.8 2.4 

Avg. plant size (MW) 22 15 28 20 

 

* Newly installed capacity in Japan: numbers calculated based on the data of Renewable Energy Promotion Law. Data of 2021 only 

referred to JWPA (https://jwpa.jp/information/6225/） 

** Average turbine capacity = Total installed capacity / Number of turbines 

 

The following shows the geographical distribution of the sample. As shown in Figure 3, compared to the statistical 

population (all plants of 20 kW of higher installed under FiT), the sample is slightly less in Hokkaido and larger in 

western Japan. On the other hand, the distribution in Tohoku closely mirrors the population. 

Figure 3 Regional Distribution of Population and Sample 

 

Note: The eight regions are based on prefectural divisions and differ from general electricity transmission and distribution areas. 
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2.2 Trends in onshore turbine technologies 

2.2.1 Turbine capacity 

This section organizes trends in onshore turbine technologies in Japan based on the sample data. First of all, as 

shown in Figure 2, average turbine capacity has been increasing. It was 2.0 MW per turbine in 2016-17, and this 

increased to 2.8 MW in 2020-21. 

Figure 4 shows the distribution of single onshore turbine capacity based on per-plant averages. In 2016-17, turbines 

of 2 MW or lower were the mainstream, but large turbines have been installed in quick succession so that as of 2020-

21 turbines over 3 MW have become the mainstream. 

Figure 4 Single OnshoreTurbine Capacity Distribution (Plant Averages) 

 

2.2.2 Hub height and rotor diameter 

As turbine capacitys have increased, hub heights and rotor diameters have also increased. The average hub height 

was 77.3 m in 2016-17, but in 2020-21 it was 82.4 m, advancing by approximately 5 m (Figure 5). At their highest, 

hub heights are over 90 m. The average rotor diameter was 85.7 m in 2016-17, but it has grown to over 100 m in 

2020-21 (Figure 6). The hub height was usually designed to keep the rotor above a certain minimum ground clearance. 

Relation between average hub height and average rotor diameters for each year can be found that “Hub height = rotor 

diameter / 2 + (32~34)”. These increases in hub heights and rotor diameters have helped increase the amount of 

electricity generated from each turbine. 
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Figure 5 Average Hub Height (Plant Averages) 

 

Figure 6 Average Rotor Diameter (Plant Averages) 
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On the other hand, the fact that the capacity per turbine is increasing does not necessarily indicate that the per-

turbine capacity factor is also increasing, but we should looke at specific power (W/㎡), which is capacity per square-

meter of swept area. Theoretically, wind power capacity (W) is proportional to the cube of wind speed and 

proportional to the swept area of the rotor. Therefore, for the same wind speed, the smaller the specific power (W/m2), 

the greater the wind power capacity (W) and the greater the capacity factor.. Generally, in areas with low wind speeds, 

turbines with low specific power have been used to increase the electricity generated. For this reason, to assess trends 

in onshore wind power technologies, it is necessary to also consider specific power figures. 

Trends in average specific power in the sample obtained in this study are shown in Figure 7. There is a slight 
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(IEA Wind, 2019). In Germany, specific power was 317W/㎡ (IEA Wind, 2019), and decreased to 286W/㎡ in 20213. 

In 2021, the average rotor diameter in Germany was 133m which is significantly longer than 100m, the average in 

Japan. In the US, average specific power in 2020 was 223 W/m2, which is significantly lower than Japan and Germany 

(DOE, 2021). The reason average specific power for onshore turbines is lower in the US is the contribution being 

made by the use of blades with large rotor diameters for a small single unit capacity. The average rotor diameter in 

the US is 124.8 m, around 25 m longer than turbines in Japan (DOE, 2021). 

Figure 7 Trends in Specific Power 

 

2.2.4 Turbine Types Based on IEC Wind Turbine Standards (2005) 

IEC (International Electrotechnical Commission) is an organization that formulates international standards in the 

field of electrical and electronic technology and the design requirements for wind power generation are specified in 

IEC61400-1. Wind turbine standards based on the international IEC 61400-14, as shown in Figure 8. differ with 

differences in wind conditions and are divided into four classes, I, II, III, and S. Standard wind turbine standard are 

classified into three classes, I, II, and III, according to annual average wind speed, reference wind speed, and 

turbulence intensity. There is also a class S, which designates turbines not categorized into any of the three standard 

classes. “Class S designates not only turbines with high standard wind velocities specified by the designer but also 

potentially refers to those with low velocities and all turbines with design specifications that differ from standard, 

including for turbulence intensity, wind speed frequency distribution, operating temperature, and air density” (NEDO, 

2008), Appendix A-3). According to Wang (2021), wind turbines classified in Class Ⅱ and Class Ⅲ have been 

mainly used in the world in 2016-2021. 

 

 

 

3 Calculated by the average data of onshore wind power in Germany based on Deutsche WindGuard GmbH (2022) 
4 In 2019, IEC61400-1 is being revised to its fourth edition, in which a new criterion for reference wind speeds, "Class T," which 

considers tropical cyclones such as typhoons and high turbulence. As a result, wind turbine manufacturers have been developing wind 

turbines that comply with this new standard. However, all wind turbines surveyed in this study were constructed before 2019, and it is 
believed that the wind turbines that comply with this new standard are not included in this study.  
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Figure 8 IEC 61400-1 (2005) Wind Turbine Standard Wind Conditions 

 

Source: NEDO (2008), Appendix A-3 

The turbine types in the sample data are organized based on the categories of the IEC 61400-1 standard. As shown 

in Figure 9, most installed onshore turbines in Japan are IEC class II turbines, followed by class S and class I. While 

the average annual wind speeds in Japan are lower than the rest of the world, it is expected that Class I or Class S 

wind turbines are required in some areas due to high turbulence intensity caused by strong winds from typhoons and 

the country's topography. However, this study reveals that Class II turbines, widely adopted in other countries, also 

account for the majority in Japan. On the other hand, Class III turbines, also adopted worldwide, are rarely used in 

Japan. It can be considered that Class III turbines cannot cope with the temporary strong winds caused by typhoons. 

Figure 9 Distribution by IEC Standard 
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Figure 10 Average Capacity Factor by Region 

 
Note: Average capacity factor is calculated as the ratio of total estimated electricity generated by each power plant to the installed 
capacity of each plant. 

Capacity factor is impacted not only by the wind condition of the site but also by hub height and specific power. 

Based on this fact, we statistically analyzed the relative impact of these multiple factors on an increased capacity 

factor. Here, extension-type quantification I is used for multivariate analysis5, to analyze differences in location by 

category. Capacity factor is the objective variable, and there are three explanatory variables: region, hub height, and 

specific power. 

The analysis results of extension-type quantification I are shown in Figure 11. The coefficient of determination is 

0.368, so analysis precision is not necessarily good. This is because the categories are roughly divided into just four 

regions, which does not accurately reflect wind condition at the power plant sites. Looking at category scores6 by 

region, Hokkaido’s score is extremely high at 3.4 points. This means that plants sited in Hokkaido have a capacity 

factor 3.4 points higher than the average. Regarding hub heights (m), when the height goes up by 1 m, capacity factor 

goes up by 0.6 points. Specific power, theoretically, should be negative, but it is slightly positive, so the low precision 

of the analysis is a problem. 

 

 

 

 

 
5 Extension-type quantification I is one of the methods to "derive a forecast model equation, predict the objective variable, and 
elucidate the factors that have an important influence on that prediction," and allows both quantitative and qualitative data to be 

applied to the forecast equation for the explanatory variables. (Institute of Statistical Analyses, Inc.) 

6 Also called categorical data, this is a quantitative representation of the extent to which each categorical item influences the value of 
the objective variable. 
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Figure 11 Analysis of Factors Affecting Capacity Factor 
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3 Trends in Onshore Wind Power Costs in Japan 

Based on the analysis of technological trends in the previous chapter, we analyze onshore wind power costs in 

Japan in this chapter, based on the cost data that was obtained. This study focuses on installation costs. Other costs 

are excluded from the scope of analysis. 

3.1 Installation costs 

Average installation costs have been gradually coming down, decreasing from 327,000 yen/kW (2016-17) to 

285,000 yen/kW (2020-21) (Figure 12). Three cost areas have been declining: wind turbine costs, electrical work 

costs, and battery costs. At the same time, transportation costs (domestic) and foundation and site preparation costs 

are increasing. Transportation costs have increased from 12,000 yen/kW to 22,000 yen/kW. However, this is due to 

some projects being delayed by the COVID-19 pandemic and unanticipated costs being incurred from unavoidable 

situations such as transport vehicles standing by or being re-dispatched. Excluding these outliers, transportation costs 

are nearly unchanged. 

Figure 12 Average Installation Costs 

 
Source: BNEF 2021 refers to Wang (2021). Price of wind turbines contracted in the second half of 2020. 
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When compared to average installation costs for onshore wind power globally during the same period (BNEF 

2021), which are 149,000 yen/kW, Japan’s installation costs are fairly high (Figure 12). Looking at the breakdown, 

some costs differ greatly from BNEF 2021 levels and others are nearly the same. The costs equivalent to global levels 

are transportation costs, road development costs, and facility installation costs. The costs that differ substantially from 

BNEF 2021 levels are 1) turbine costs, 2) foundation and site preparation costs, and 3) electrical work and 

transmission infrastructure costs (including electrical work, construction work contributions, upper grid 

enhancements, and battery storage costs). The following considers the above three cost categories in detail. 

3.2 Wind turbine costs 

Wind turbine costs account for the largest proportion of installation costs, so they are an important factor for cost 

analysis. Average turbine costs per kilowatt have fallen from 175,000 yen/kW (2016-17) to 148,000 yen/kW (2020-

21) in Japan. The median has fallen from 145,000 yen/kW to 131,000 yen/kW (Figure 13). 

Figure 13 Wind Turbine Costs (Quartiles) 

 

Note: The median is shown with ○; the upper-lower range is 25% and 75%. 

At the same time, as shown in Figure 12, there is a major difference between turbine costs in Japan and turbine 

costs internationally. However, BNEF 2021 figures in Figure 12 refer to turbine prices contracted in the second half 

of 2020, and in some cases they are not on the same timeline as costs in Japan, which are shown based on the launch 

year. In order therefore to compare costs on the same timeline, for turbine costs based on the construction-start year 

(at site delivery time), the results of this survey and overseas data were compared (Figure 14). As a result, there was 

a cost difference of around 50,000 yen/kW. Around 30% of power plants adopted wind turbines supplied by relatively 

expensive turbine manufacturers. This cost difference was hardly reduced even if they were excluded. 
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Figure 14 Turbine Costs: Comparison of Japan and International Levels 

 
Source: BNEF applies figures in Wang (2021). Exchange rates use the average rate for that year. 
Note: international transportation costs are included in turbine costs data of both Japan and BNEF. 

As mentioned above, Japan’s wind power plants are nearly the same size as Europe’s, but differ greatly in size 

from the US. To determine whether this difference in plant size has a major impact on the cost of the wind turbines 

that are procured, reference was again made to BNEF data (Figure 15). Looking at Figure 15, wind power plants of 

11-30 MW (the average plant size in Japan is 20 MW) procure turbines at costs that are equivalent to other sized 

plants, particularly large-scale plants. It is hard, therefore, to conclude that differences in power plant size in the 

world is likely to be the reason for the high cost of wind turbines in Japan. With regard to the turbines themselves, 

even if there are some differences in specifications (incl. IEC standards), it is unlikely that this would produce large 

differences in real costs between Japan and the rest of the world. 

Figure 15 Turbine Cost by Plant Size (at Site Delivery Time) 

 
Source: Created from Wang (2021). 
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Next, we analyze factors thought to impact turbine costs (per kilowatt) using extension-type quantification I. In 

this analysis, the objective variable is turbine cost, and the explanatory variables are construction-start year, contract 

type, IEC standard, single turbine capacity, number of turbines (at the plant), and hub height (Figure 16). The analysis 

resulted in a coefficient of determination of 0.537, which is medium precision. Excluding differences caused by the 

construction-start year, the results suggest that increasing single turbine capacity could contribute to reducing turbine 

costs. Differences in contract type could also be an important factor. Procuring turbines with methods other than via 

EPC contract (through BOP7  or separate engagement8 ) has the potential to reduce costs. Further, increasing the 

number of turbines at the plant is also a cost-reduction factor. On the other hand, advancing hub heights is potentially 

a cost-increase factor. 

Figure 16 Analysis of Turbine Cost Factors 

 

  

 
7 BOP contract type stands for [Balance of Plant] contract, in which all the construction work is ordered to a general contractor, except 
for wind turbine procurement.  

8 Separate engagement contract is a method in which the power producer supervises every process from wind turbine procurement to 

construction work and contracts directly with each individual construction company, rather than making an order in a bundle with an 
EPC contractor for everything. 
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3.3 Foundation and site preparation costs 

Average foundation and site preparation costs have increased from 34,000 yen/kW in 2016-17 to 43,000 yen/kW 

in 2020-21. The median has also increased slightly, from 30,000 yen/kW to 35,000 yen/kW. 

Figure 17 Foundation and Site Preparation Costs (Quartiles) 

 

 

Foundation and site preparation costs could be impacted by the site topography and construction material costs. 

Firstly, the study looked at topography and construction details, factors that could correlate with foundation and site 

preparation costs. Figure 18 shows the average site prep soil volume per turbine, pile foundation rate, and average 

single turbine construction costs for each topographical type. Each of these items is related to foundation and site 

preparation costs. Topography is categorized into four types based on topographical data for wind power plant sites 

in the Environmental Impact Assessment Database System9  maintained by the Ministry of the Environment in 

reference to the 1:200,000 topographical map prepared based on the Fundamental Land Classification Survey 

administered by the Ministry of Land, Infrastructure, Transport and Tourism. Site prep soil volume is related to costs 

for preparing the yard. Also, classified broadly, there are two types of foundations, direct and pile, and even the same 

plant may use both types depending on ground conditions; foundation and site preparation costs also vary. 

Figure 18 Construction Details and Unit Costs by Topography Type 

Topography 
type 

Number of 
plants 

Avg. site prep soil volume per 
turbine 

(1,000 m3) 

Avg. pile 
foundation rate 

Avg. single turbine 
construction costs 

(million yen/turbine) 

Lowlands 11 2.3 90% 161 

Tablelands 5 2.1 67% 100 

Hills 4 8.1 83% 65 

Mountains 13 5.3 48% 86 

Note: Pile foundation rate: Number of turbines with pile foundations / Number of turbines at the plant 

  

 
9 Ministry of the Environment, “Environmental Impact Assessment Database System” (https://www2.env.go.jp/eiadb/ebidbs/) 
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Based on topography type, the following characteristics can be found. First of all, with regard to site prep soil 

volume per turbine, soil volume is low on plains and tablelands, around 2,000 m3 per turbine, but in hills and 

mountains, where the terrain is complex, soil volume is over 5,000 m3 per turbine. As for the foundation construction 

method, pile foundations are generally used when plants are installed on soft ground. Because this cost depends on 

ground conditions at the site, it is difficult to find clear trends based on the topography type, but pile foundations are 

often used in lowlands and tablelands. On the other hand, in mountains, the direct foundation rate is relatively high 

compared to other topography types. Average foundation engineering costs per single turbine are high in lowlands 

and tablelands and relatively low in mountains and hills. The result runs contrary to the normal assumption that 

construction costs are high in mountainous areas. 

Next, concrete is one of the construction materials that would impact the costs, so the study looked at the price of 

ready-mix concrete (RMC) (Figure 19). Using price indices by city for each year to calculate average RMC prices, 

in Tohoku (Sendai), the price has been coming down since peaking in FY2014-15, and it has been increasing in most 

other regions. 

Figure 19 Average Ready-Mix Concrete Price Estimates by City (yen/m3) 

 Sapporo Sendai Tokyo Niigata Nagoya Osaka Hiroshima Takamatsu Fukuoka 

FY2013  10,962 13,696 12,522 11,801 9,101 12,072 14,115 8,127 10,562 

FY2014  12,363 14,048 12,814 12,339 10,256 12,072 14,115 8,187 10,900 

FY2015  12,400 14,048 13,279 12,527 11,221 12,072 14,796 8,457 10,900 

FY2016  12,896 14,020 13,279 12,527 11,098 13,171 14,929 10,867 10,137 

FY2017  13,243 13,696 13,412 12,364 10,806 15,609 14,929 12,584 9,374 

FY2018  13,243 13,444 13,824 8,969 10,930 16,116 14,929 12,584 11,412 

FY2019  13,243 12,938 14,195 8,519 11,300 18,314 15,698 13,878 13,450 

FY2020  13,243 12,390 14,408 10,247 11,300 19,400 15,950 14,800 13,450 

Note: Average RMC prices by city are calculated for each fiscal year using RMC prices listed in “Primary Material Markets and Price 
Trends” on Kensetsu Plaza, a general construction portal site, and price indices by city by fiscal year published by the Economic 
Research Association. 

As shown above, foundation engineering costs are tied to various factors. Statistical analysis therefore was 

performed to determine the extent to which the multiple factors affect these costs. This method used was extension-

type quantification I. The objective variable is foundation engineering costs (total) and the explanatory variables are 

foundation type, site prep soil volume, RMC prices, and basic design contractor10. 

The results of extension-type quantification I analysis are shown in Figure 20. The coefficient of determination is 

0.648, so analysis precision is medium. From this analysis, it can be seen that foundation type has a large effect on 

costs. The category scores specifically indicates that pile foundations are approximately 11 million yen per turbine 

more costly than direct foundations (Figure 20). In Figure 18, foundation engineering costs are higher in lowlands, 

possibly due to the fact that in lowlands, the solid ground is several tens of meters below ground level, and 

 
10 Basic design contractor has been added as an explanatory variable because in correlation analysis the correlation 
ratio exceeded 0.1. 
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therefore, costly pile foundations are often used. Also, it was found that both RMC prices and site prep soil volume 

have an impact on costs. Moreover, differences in the basic design contractor also potentially affect foundation 

engineering costs. Though it is unclear how differences in the contractor affect basic design, it is possible that in the 

basic design it is important to consider elements such as the optimal layout of turbines in terms of the impact of 

these on foundation engineering costs. 

 

Figure 20 Analysis of Factors Affecting (Total) Civil Engineering Costs 

 

3.4 Electrical work and transmission infrastructure costs 

As shown in Figure 12, electrical work costs and transmission infrastructure costs are extremely high compared to 

overseas. These costs include installation costs for transformers and other electrical equipment, onsite cable 

installation costs, and installation costs for power lines from the plant to the connection point (offsite connection 

lines). 

Moreover, there are also surcharge required to pay to the transmission and distribution system operator when 

connecting to the grid. In addition, when a connection request is made by power producer, if the transmission and 

distribution system operator determines there is no available capacity on the upper grid, the producer was also charged 

for upper grid enhancement costs11. Separate from this, some transmission and distribution operators required wind 

 
11 This system was changed with the “Guidelines on Grid Enhancements from Power Facility Installation and the Cost Burden, etc. of 

Operations” formulated in 2015, and regarding core intraregional grids in the upper two voltage categories, in terms of the general cost 
burden, as a basic principle, power producers bear no burden except in cases in which significant enhancement costs are incurred 
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power producers to take measures for frequency changes, and for this they required that battery storages be installed 

for some wind power plant connections. For example, in FY2008 and FY2010, before the Act on Special Measures 

Concerning Procurement of Electricity from Renewable Energy Sources by Electricity Utilities (Renewable Energy 

Special Measures Act) was introduced, Tohoku Electric made offers to purchase electricity from wind power plants 

on the condition that battery storages were installed (Tohoku Electric Power Co., Inc., 2008; 2010). The survey 

sample included a number of plants that responded to this offer. For these plants, battery storage installation costs are 

included. 

Figure 21 Trends in Average Electricity/Transmission Related Costs 

 

Figure 21 shows the average cost per kilowatt based on the survey sample. In terms of trends, average battery costs 

were 24,000 yen/kW in 2016-17, but costs dropped sharply and were zero in 2020-21. This means that there were no 

longer connections to the grid by power plants that had been required to install battery storages prior to the Renewable 

Energy Special Measures Act taking effect, as discussed above. As mentioned, battery storages were only installed 

at certain power plants, so it is difficult to grasp the actual situation looking at average costs alone. Taking only plants 

that have battery storages, battery costs exceeded 60,000 yen/kW in all cases, significantly raising installation costs. 

In the other cost category, electrical work costs registered a large decline in 2018-19. Regarding upper grid 

enhancement costs, within the sample, there was one plant that had these costs. It was a medium-sized plant with 

total capacity between 7.5 MW and less than 15 MW, but it bore upper grid enhancement costs of more than 200 

million yen. Other costs (transmission infrastructure costs, construction work contributions) are flat and have not 

changed. 

  

 

(when the maximum general cost burden [20,000 yen/kW for onshore wind power] is exceeded) (Agency for Natural Resources and 
Energy, 2015). 
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Transmission infrastructure costs are installation costs for onsite power lines and offsite connection lines. These 

costs vary with the voltage level and line length. The study used the extension-type quantification I method to analyze 

the relationship between these related factors and (total) transmission costs. The objective variable is (total) 

transmission costs, and the explanatory variables are type of offsite connection lines and onsite power lines, 

distance,voltage, and contract type.  

As a result, the coefficient of determination is 0.784, so precision is high. As shown in Figure 22, the length of 

offsite connection lines, particularly underground lines, is a factor that increases costs. Underground offsite 

connection lines are more costly than even overhead lines, which are 30 million yen per kilometer. It was found that 

higher-voltage offsite connection lines lead to increased transmission infrastructure costs. However, transmission at 

high voltage reduces transmission loss, so it is important that cost increases are balanced out by transmission 

efficiency. Another noteworthy finding was differences in transmission infrastructure costs depending on the contract 

type. That is to say, separate engagement has the potential to reduce transmission infrastructure costs. 

 

Figure 22 Analysis of Factors Affecting (Total) Transmission Infrastructure Costs 
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4 Conclusion: Summary of Analysis Results and the Potential for Reducing Onshore 

Wind Power Costs in Japan 

This study analyzed technology trends and costs for onshore wind power in Japan over the six years from 2016 to 

2021. Below is a summary of the findings gained from this study which offers insights into the potential of reducing 

onshore wind power costs. 

1) Steady increase in wind turbine size was observed in Japan. From 2016 to 2021, the average turbine capacity 

increased from 2.0 MW to 2.8 MW. In particular, the output of most turbines installed in 2020-21 were over 3.0 MW.  

2) Increase in turbine capacity is very much interconnected with advancments in hub heights and reducing specific 

power. Both of these serve to increase the capacity factor. These factors are also listed in JWPA (2019) ‘s report on 

Cost Competitiveness Task Force, and is considered as one of the technologies that will drive costs down in wind 

power generation in Japan. 

3) On the other hand, JWPA (2019) also states that technological progress, such as growth in turbine size “is 

projected to increase construction costs even if technological innovations in nacelles, towers, and foundation 

structures are anticipated” and there are concerns that turbine, foundation and site preparation costs will rise. The 

results of this study however confirmed that although increasing hub heights was a cost-adding factor, increasing 

turbine capacity had the potential to reduce turbine costs (per kilowatt).  

4) Regarding foundation and site preparation costs, no evidence was found that increasing turbine capacity causes 

an increases in costs. The results showed that pile foundation costs compared to direct foundations may have an 

influence in pushing up costs and that the complexitiy of the terraine was not the sole factor affecting costs. 

5) The study also revealed that the voltage of the offsite connection line and the distance of the underground line 

were important factors that affected transmission infrastructure costs. Taking this into account when installing power 

lines will be worthwhile to consider. 

6) Onshore wind power installation costs are greatly affected by grid connection and usage rules. Until now, power 

producers had to bear specific costs such as upper grid enhancement costs and in certain regions, storage battery 

installation costs due to regualations layed by the general electric utilities. These costs became a significant burden 

on the wind power producers. As of 2022, these rules that have caused individual power producers to excessively 

bear costs related to infrastructure development and grid stabilization, are being banned, and consequently, a decline 

in installation costs are already observed and expected to continue in the future. 

7) Differences in contract type had an impact on several cost categories to a greater or lesser degree. The study 

showed that wind turbine costs could be reduced through direct procurement (contract type referred to as “other than 

EPC”) and transmission infrastructure costs could be reduced by separate engagement. 

The above findings reported here is expected to serve as a basis for examining future costs in wind power 

generation. 
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In this study, a clear upward trend in wind turbine size was observed, and its impact on costs was empirically 

demonstrated. These findings highlight the following: 

When making projections for 2030 generation costs, it is necessary to foresee the effects of technology 

advancements and evaluate the impact it will have on wind turbine costs and capacity factors. Taking such 

considerations into account will help minimize uncertainties when forecasting future gereration costs. 

Secondly, the government’s Power Generation Cost Verification Working Group (2021) assumes that only wind 

turbine costs will converge with international prices and that other costs will remain unchanged. This assumption is 

rather too simplified and the perspective that cost efficiency, which is expected to improve on the whole, will also 

contribute in cost reductions, is missing. In fact, the present study demonstrated that there were differences in costs 

depending on basic design contractor and contract types. It is possible to assume that cost efficiency will accelerate 

as domestic power producers become more skilled. 

On the other hand, there were several issues that requires further investigation. While it was confirmed once again 

that major costs, such as wind turbine costs, are considerably higher in Japan compared to the rest of the world, the 

study was not able to identfy why there was an approximately 50,000 yen per kilowatt difference in turbine costs 

between Japan and other countries. Another result that ran counter to conventional wisdoms was that the cost per 

turbine turned out to be higher in lowland areas than in the mountainous areas. Further research will be needed to 

find out the factors lying behind this. 
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